A phenol-enriched cuticle is ancestral to lignin evolution in land plants
نویسندگان
چکیده
Lignin, one of the most abundant biopolymers on Earth, derives from the plant phenolic metabolism. It appeared upon terrestrialization and is thought critical for plant colonization of land. Early diverging land plants do not form lignin, but already have elements of its biosynthetic machinery. Here we delete in a moss the P450 oxygenase that defines the entry point in angiosperm lignin metabolism, and find that its pre-lignin pathway is essential for development. This pathway does not involve biochemical regulation via shikimate coupling, but instead is coupled with ascorbate catabolism, and controls the synthesis of the moss cuticle, which prevents desiccation and organ fusion. These cuticles share common features with lignin, cutin and suberin, and may represent the extant representative of a common ancestor. Our results demonstrate a critical role for the ancestral phenolic metabolism in moss erect growth and cuticle permeability, consistent with importance in plant adaptation to terrestrial conditions.
منابع مشابه
A Novel N-Methyltransferase in Arabidopsis Appears to Feed a Conserved Pathway for Nicotinate Detoxification among Land Plants and Is Associated with Lignin Biosynthesis.
The Preiss-Handler pathway, which salvages nicotinate (NA) for NAD synthesis, is an indispensable biochemical pathway in land plants. Various NA conjugations (mainly methylation and glycosylation) have been detected and have long been proposed for NA detoxification in plants. Previously, we demonstrated that NA O-glucosylation functions as a mobilizable storage form for NAD biosynthesis in the ...
متن کاملExploring the geochemical distribution of organic carbon in early land plants: a novel approach
Terrestrialization depended on the evolution of biosynthetic pathways for biopolymers including lignin, cutin and suberin, which were concentrated in specific tissues, layers or organs such as the xylem, cuticle and roots on the submillimetre scale. However, it is often difficult, or even impossible especially for individual cells, to resolve the biomolecular composition of the different compon...
متن کاملDeciphering the Evolution and Development of the Cuticle by Studying Lipid Transfer Proteins in Mosses and Liverworts
When plants conquered land, they developed specialized organs, tissues, and cells in order to survive in this new and harsh terrestrial environment. New cell polymers such as the hydrophobic lipid-based polyesters cutin, suberin, and sporopollenin were also developed for protection against water loss, radiation, and other potentially harmful abiotic factors. Cutin and waxes are the main compone...
متن کاملApoplastic diffusion barriers in Arabidopsis.
During the development of Arabidopsis and other land plants, diffusion barriers are formed in the apoplast of specialized tissues within a variety of plant organs. While the cuticle of the epidermis is the primary diffusion barrier in the shoot, the Casparian strips and suberin lamellae of the endodermis and the periderm represent the diffusion barriers in the root. Different classes of molecul...
متن کاملEvolution of Primitive Land Plants: A Review
Our understanding of the evolution of primitive land plants is overviewed. Molecular phylogenetic data suggest that the suggested ancestor of the land plants is Charophyceae, although other ancestry is suggested based on different lines of evidence. Invasion to land environment during the mid-Ordovician or earlier should have been made possible by chemical compounds, ozone, flavonoid, cutin, sp...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 8 شماره
صفحات -
تاریخ انتشار 2017